
Background Geodetic Observations Timing of PGD Conclusions

Real-Time GPS for Real-time Science
Rapid Magnitude Estimation from GPS Displacement

Dara E. Goldberg1

Diego Melgar2, Yehuda Bock1

1Scripps Institution of Oceanography
University of California San Diego

2University of Oregon

2018 UNAVCO Science Workshop

Dara E. Goldberg March 27, 2018 degoldberg@ucsd.edu 1 / 20



Background Geodetic Observations Timing of PGD Conclusions

Motivation: Tsunami Warning
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Goals of Local Tsunami Warning

Locate

Identify size

Identify mechanism

Initiate evacuation

Why is constraining the magnitude so difficult in real-time?
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The Utility of GPS for Magnitude Estimation

Direct measurement
of displacement

Static offset scales
with magnitude

Peak displacement
scales with
magnitude

Results in a few
minutes

Not fully utilized for
early warning

Grapenthin and Freymueller, 2011
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How Early Can we Estimate Magnitude?

Nucleation Duration:

Ellsworth and Beroza, 1995

Maximum P-wave Period:

Olsen and Allen, 2005
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How Early Can we Estimate Magnitude?

Maximum P-wave Period:

Rydelek and Horiuchi, 2006

Maximum Displacement:

Meier et al., 2016

Moment Rate Function:

Meier et al., 2017
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How Early Can we Estimate Magnitude?

Instrumentation

Need broadband instrumentation capable of identifying first seismic wave arrivals and
accurately measuring displacements.

Magnitude Estimation

Identify earliest reliable metric for magnitude scaling.

Rupture Evolution

If earliest metric is available prior to rupture completion (deterministic), what is the
physical basis?
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Dataset

14 earthquakes

5.7≤Mw≤9.1

1200+ GNSS Stations (GEONET)

1700+ Strong-Motion Sites
(KiK-net/ K-NET)

Triggered strong-motion stations,
occasionally late

Too few collocated sites to complete study
with true seismogeodesy
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Dataset: Simulating Seismogeodesy
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Evolution of Displacement
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Evolution of Displacement
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Evolution of Displacement

No clear scaling from early
observations

No clear scaling from early
observations

Separation between events of
different magnitude occurs first at
close stations, then at farther
stations

No clear scaling from early
observations

Separation between events of
different magnitude occurs first at
close stations, then at farther
stations

Observations from larger
earthquakes exceed those from
smaller earthquakes only when the
smaller earthquake reaches
peak ground displacement
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When can we expect to observe PGD?

– – – – S - P
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When can we expect to observe PGD?

– – – – S - PMagnitude 9 event takes much longer
to reach PGD

Most events asymptote the expected
S-P line

At close distances, TPGD-TP exceeds
S-P line

The distance at which TPGD-TP meets
S-P appears to increase with
increasing magnitude

Magnitude 9 event takes much longer
to reach PGD

Most events asymptote the expected
S-P line

At close distances, TPGD-TP exceeds
S-P line

The distance at which TPGD-TP meets
S-P appears to increase with
increasing magnitude

What would we see if we had
instrumentation at closer distances?
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Model Configuration
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How Does Slip Manifest?

Pulse-like Slip
Assume pulse-like slip

Magnitude-dependent pulse width
(rise time)

Magnitude-dependent fault dimensions

Fill in what happens at close distances

Do results look like the observations?
Rise time: local duration of slip

Pulse width is magnitude-dependent
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Results
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Results

Near-fault observations are
sensitive to the rise time

Near-fault observations are
impacted by nearby fault
patches and the pattern of slip

Receivers at distance observe
the integrated fault signal

Stations <90km observe PGD
with ∼35s of observation, up to
a Mw8.5, despite a rupture
duration of ∼65s.
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Implications for Early Warning with GNSS

Earthquake magnitude can be reliably estimated once PGD has been observed.

At close distances, PGD is delayed by increasing fault dimension and rise time.

If observed at close enough distances, PGD can be observed prior to rupture
completion, implying a weak determinism.

PGD estimates will be available faster with direct displacement measurements
from GNSS.

Collocated seismogeodetic instrumentation will allow proper earthquake detection
and magnitude scaling improving real-time local tsunami warning.
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