# Real-Time GPS for Real-time Science Rapid Magnitude Estimation from GPS Displacement

## Dara E. Goldberg<sup>1</sup> Diego Melgar<sup>2</sup>, Yehuda Bock<sup>1</sup>

<sup>1</sup>Scripps Institution of Oceanography University of California San Diego

<sup>2</sup>University of Oregon

2018 UNAVCO Science Workshop

Geodetic Observation

Timing of PGE

Conclusions

2 / 20

#### Motivation: Tsunami Warning



## Goals of Local Tsunami Warning

- Locate
- Identify size
- Identify mechanism
- Initiate evacuation





#### Goals of Local Tsunami Warning

- Locate
- Identify size
- Identify mechanism
- Initiate evacuation



Why is constraining the magnitude so difficult in real-time?





| Bac | kground |
|-----|---------|
|     | 0       |

Geodetic Observation

Timing of PGI

#### Instrumentation



Dara E. Goldberg

March 27, 2018

degoldberg@ucsd.edu

4 / 20

#### The Utility of GPS for Magnitude Estimation

- Direct measurement of displacement
- Static offset scales with magnitude
- Peak displacement scales with magnitude
- Results in a few minutes
- Not fully utilized for early warning



Grapenthin and Freymueller, 2011

#### How Early Can we Estimate Magnitude?



#### Maximum P-wave Period:



Geodetic Observatio

Timing of PGI

Conclusions

#### How Early Can we Estimate Magnitude?

Maximum P-wave Period:





## Moment Rate Function:



イロト イポト イヨト イヨト

Rydelek and Horiuchi, 2006

Meier et al., 2016

Meier et al., 2017

э

#### How Early Can we Estimate Magnitude?

#### Instrumentation

Need broadband instrumentation capable of identifying first seismic wave arrivals and accurately measuring displacements.

## Magnitude Estimation

Identify earliest reliable metric for magnitude scaling.

## **Rupture Evolution**

If earliest metric is available prior to rupture completion (deterministic), what is the physical basis?

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Geodetic Observations

Timing of PGE

#### Dataset



- 14 earthquakes
- 5.7 $\leq$ M<sub>w</sub> $\leq$ 9.1
- 1200+ GNSS Stations (GEONET)
- 1700+ Strong-Motion Sites (KiK-net/ K-NET)
- Triggered strong-motion stations, occasionally late
- Too few collocated sites to complete study with true seismogeodesy

Dara E. Goldberg

#### Dataset: Simulating Seismogeodesy





Dara E. Goldberg

degoldberg@ucsd.edu

10 / 20

#### Dataset: Simulating Seismogeodesy



Dara E. Goldberg

degoldberg@ucsd.edu

10 / 20

146

#### Dataset: Simulating Seismogeodesy





Dara E. Goldberg

March 27, 2018

degoldberg@ucsd.edu

10 / 20

#### Dataset: Simulating Seismogeodesy





Dara E. Goldberg

March 27, 2018

degoldberg@ucsd.edu

10 / 20

## Evolution of Displacement



・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

|                           | Geodetic Observations | Timing of PGD | Conclusions |
|---------------------------|-----------------------|---------------|-------------|
| Evolution of Displacement |                       |               |             |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## Evolution of Displacement



 No clear scaling from early observations



degoldberg@ucsd.edu

Geodetic Observations

Timing of PGE

Conclusions

#### Evolution of Displacement



- No clear scaling from early observations
- Separation between events of different magnitude occurs first at close stations, then at farther stations

Geodetic Observations

Timing of PGE

Conclusions

#### Evolution of Displacement



- No clear scaling from early observations
- Separation between events of different magnitude occurs first at close stations, then at farther stations
- Observations from larger earthquakes exceed those from smaller earthquakes only when the smaller earthquake reaches
   peak ground displacement

#### When can we expect to observe PGD?



March 27, 2018

---S-P

#### When can we expect to observe PGD?

- Magnitude 9 event takes much longer to reach PGD
- Most events asymptote the expected S-P line
- At close distances, T<sup>PGD</sup>-T<sup>P</sup> exceeds S-P line
- The distance at which T<sup>PGD</sup>-T<sup>P</sup> meets
  S-P appears to increase with increasing magnitude



#### When can we expect to observe PGD?

- Magnitude 9 event takes much longer to reach PGD
- Most events asymptote the expected S-P line
- At close distances, T<sup>PGD</sup>-T<sup>P</sup> exceeds S-P line
- The distance at which T<sup>PGD</sup>-T<sup>P</sup> meets
  S-P appears to increase with increasing magnitude
- What would we see if we had instrumentation at closer distances?





Dara E. Goldberg

#### Model Configuration



3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### How Does Slip Manifest?

- Assume pulse-like slip
- Magnitude-dependent pulse width (rise time)
- Magnitude-dependent fault dimensions

- Fill in what happens at close distances
- Do results look like the observations?





## Rise time: local duration of slip Pulse width is magnitude-dependent

March 27, 2018

#### Results



degoldberg@ucsd.edu 18 / 20

з.

Geodetic Observation

18 / 20

#### Results



18 / 20

## Results



#### Results



18 / 20

Geodetic Observation

Timing of PGD

#### Results



#### Implications for Early Warning with GNSS

- Earthquake magnitude can be reliably estimated once PGD has been observed.
- At close distances, PGD is delayed by increasing fault dimension and rise time.
- If observed at close enough distances, PGD can be observed *prior* to rupture completion, implying a weak determinism.
- PGD estimates will be available faster with direct displacement measurements from GNSS.
- Collocated seismogeodetic instrumentation will allow proper earthquake detection and magnitude scaling improving real-time local tsunami warning.